noob_saibot
К сожалению не разобрался.
Но вот что получилось по подсказке ((df/df.loc) * 100) с того же
stackoverflow.com import pandas as pd
import datetime
import numpy as np
from pandas import DataFrame, read_csv
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib qt5
dateparse = lambda x: pd.datetime.strptime(x, '%Y-%m-%d')
result = pd.read_csv('result.csv',
encoding = 'utf-8', parse_dates=['date'],
date_parser=dateparse)
result = result.set_index(['date'])
df1 = (result['sber_junk_bonds']/result['sber_junk_bonds'].loc['2009-08-31']) * 100
s1 = pd.Series(df1)
result['sber_jb'] = s1
df2 = (result['abp_price']/result['abp_price'].loc['2009-08-31']) * 100
s2 = pd.Series(df2)
result['alpha_fi'] = s2
df3 = (result['alpha_price']/result['alpha_price'].loc['2009-08-31']) * 100
s3 = pd.Series(df3)
result['alpha'] = s3
df4 = (result['aeb_price']/result['aeb_price'].loc['2009-08-31']) * 100
s4 = pd.Series(df4)
result['alpha_eur'] = s4
df5 = (result['rpv_price']/result['rpv_price'].loc['2009-08-31']) * 100
s5 = pd.Series(df5)
result['rpv'] = s5
df6 = (result['vtb_kuz_most']/result['vtb_kuz_most'].loc['2009-08-31']) * 100
s6 = pd.Series(df6)
result['vtb'] = s6
df7 = (result['sber_fund_pers']/result['sber_fund_pers'].loc['2009-08-31']) * 100
s7 = pd.Series(df7)
result['sber_fp'] = s7
s3 = [s1, s2, s3, s4, s5, s6, s7]
ind = pd.concat(s3, axis=1)
ind
ind.plot()
plt.legend()
plt.show()
fig, axes = plt.subplots(figsize=(20, 10), nrows=4, ncols=2)
ind['sber_junk_bonds'].plot(ax=axes[0,0]); axes[0,0].set_title('sber_junk_bonds');
ind['abp_price'].plot(ax=axes[0,1]); axes[0,1].set_title('alpha_bonds');
ind['alpha_price'].plot(ax=axes[1,0]); axes[1,0].set_title('alpha');
ind['aeb_price'].plot(ax=axes[1,1]); axes[1,1].set_title('alpha_eur_bonds');
ind['rpv_price'].plot(ax=axes[2,0]); axes[2,0].set_title('rpv');
ind['vtb_kuz_most'].plot.area(ax=axes[2,1]); axes[2,1].set_title('vtb_kuz_most');
ind['sber_fund_pers'].plot(ax=axes[3,0]); axes[3,0].set_title('sber_fund_pers');
На выходе

и