Версия python 3.6, работаю через юпитер
import numpy as np # Сигмоида def nonlin(x,deriv=False): if(deriv==True): return f(x)*(1-f(x)) return 1/(1+np.exp(-x)) # набор входных данных X = np.array([ [0,0,1], [0,1,1], [1,0,1], [1,1,1] ]) # выходные данные y = np.array([[0,0,1,1]]).T # сделаем случайные числа более определёнными np.random.seed(1) # инициализируем веса случайным образом со средним 0 syn0 = 2*np.random.random((3,1)) - 1 for iter in xrange(10000): # прямое распространение l0 = X l1 = nonlin(np.dot(l0,syn0)) # насколько мы ошиблись? l1_error = y - l1 # перемножим это с наклоном сигмоиды # на основе значений в l1 l1_delta = l1_error * nonlin(l1,True) # !!! # обновим веса syn0 += np.dot(l0.T,l1_delta) # !!! print "Выходные данные после тренировки:" print l1 "Выходные данные после тренировки:" [[ 0.00966449] [ 0.00786506] [ 0.99358898] [ 0.99211957]]