Форум сайта python.su
почему датасет 1503 элемента.
Х равно 1501 элемент.
Y равно 1501 элемент.
куда исчезли 2 элемента?
import numpy import pandas as pd import math from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from sklearn.metrics import accuracy_score # convert an array of values into a dataset matrix def create_dataset(dataset, look_back=0): dataX, dataY = [], [] for i in range(len(dataset)-look_back): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return numpy.array(dataX), numpy.array(dataY) # fix random seed for reproducibility numpy.random.seed(7) # load the dataset file='test1.xlsx' xl=pd.ExcelFile(file) dataframe = xl.parse('Sheet1') dataset = dataframe.values dataset = dataset.astype('float32') # normalize the dataset scaler = MinMaxScaler(feature_range=(1, 3)) dataset = scaler.fit_transform(dataset) # split into train and test sets train_size = int(len(dataset) * 0.80) test_size = len(dataset) - train_size train, test = dataset[0:train_size,:],dataset[train_size:len(dataset),:] # reshape into X=t and Y=t+1 look_back = 1 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) # reshape input to be [samples, time steps, features] trainX = numpy.reshape(trainX,(trainX.shape[0],1,trainX.shape[1])) testX = numpy.reshape(testX,(testX.shape[0],1,testX.shape[1])) # create and fit the LSTM network model = Sequential() model.add(LSTM(4, input_shape=(1, look_back))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam',metrics=['accuracy']) model.fit(trainX, trainY, epochs=2, batch_size=1, verbose=2) # make predictions trainPredict = model.predict(trainX) testPredict = model.predict(testX) # invert predictions trainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY]) # calculate root mean squared error trainScore = math.sqrt(mean_squared_error(trainY[0],trainPredict[:,0])) print('Test Score: %.2f RMSE' % (trainScore)) testScore = math.sqrt(mean_squared_error(testY[0],testPredict[:,0])) print('Test Score: %.2f RMSE' % (testScore)) # print(len(dataset)) print(len(testX)+(len(trainX))) print(len(testY.T)+(len(trainY.T)))
Epoch 1/2 - 57s - loss: 1.1863 - accuracy: 1.0000 Epoch 2/2 - 57s - loss: 0.7782 - accuracy: 1.0000 Test Score: 0.87 RMSE Test Score: 0.84 RMSE 1503 1501 1501
Офлайн