Уведомления

Группа в Telegram: @pythonsu

#1 Ноя. 1, 2021 15:14:42

Antonioo0608
Зарегистрирован: 2021-10-16
Сообщения: 3
Репутация: +  0  -
Профиль   Отправить e-mail  

Как правильно установить метрики(accuracy)?

У меня проблема. Почему accuracy всегда показывает 100%. это ошибка. Пересмотрел много информации и вроде сделал все по шаблону. но все равно 100%. Взял стандартную нейросеть на Гитхабе для прогноза загрязнения в Пекине.(на ней обычно учатся) Функция потерь работает хорошо. А вот accuracy нет. Как исправить? Вот Код. (На многих сайтах он есть)

 from math import sqrt
from numpy import concatenate
from matplotlib import pyplot
from pandas import read_csv
from pandas import DataFrame
from pandas import concat
from sklearn import metrics
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
# convert series to supervised learning
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
    n_vars = 1 if type(data) is list else data.shape[1]
    df = DataFrame(data)
    cols, names = list(), list()
    # input sequence (t-n, ... t-1)
    for i in range(n_in, 0, -1):
        cols.append(df.shift(i))
        names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)]
    # forecast sequence (t, t+1, ... t+n)
    for i in range(0, n_out):
        cols.append(df.shift(-i))
        if i == 0:
            names += [('var%d(t)' % (j + 1)) for j in range(n_vars)]
        else:
            names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)]
    # put it all together
    agg = concat(cols, axis=1)
    agg.columns = names
    # drop rows with NaN values
    if dropnan:
        agg.dropna(inplace=True)
    return agg
# load dataset
dataset = read_csv('pollution.csv', header=0, index_col=0)
values = dataset.values
# integer encode direction
encoder = LabelEncoder()
values[:, 4] = encoder.fit_transform(values[:, 4])
# ensure all data is float
values = values.astype('float32')
# normalize features
scaler = MinMaxScaler(feature_range=(0, 1))
scaled = scaler.fit_transform(values)
# frame as supervised learning
reframed = series_to_supervised(scaled, 1, 1)
# drop columns we don't want to predict
reframed.drop(reframed.columns[[9, 10, 11, 12, 13, 14, 15]], axis=1, inplace=True)
print(reframed.head())
# split into train and test sets
values = reframed.values
n_train_hours = 365 * 24
train = values[:n_train_hours, :]
test = values[n_train_hours:, :]
# split into input and outputs
train_X, train_y = train[:, :-1], train[:, -1]
test_X, test_y = test[:, :-1], test[:, -1]
# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))
test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)
# design network
model = Sequential()
model.add(LSTM(100, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(Dense(1))
model.compile(loss='mae', optimizer='adam', metrics=['accuracy'])
# fit network
history = model.fit(train_X, train_y, epochs=5, batch_size=54, validation_data=(test_X, test_y), verbose=2)                    
train_acc = model.evaluate(train_X, train_y, verbose=2)
test_acc = model.evaluate(test_X, test_y, verbose=2)
# plot history
pyplot.subplot(211)
pyplot.title('Loss')
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='test')
pyplot.legend()
pyplot.subplot(212)
pyplot.title('Accuracy')
pyplot.plot(history.history['accuracy'], label='train')
pyplot.plot(history.history['val_accuracy'], label='test')
pyplot.legend()
pyplot.show()
# make a prediction
yhat = model.predict(test_X)
test_X = test_X.reshape((test_X.shape[0], test_X.shape[2]))
# invert scaling for forecast
inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1)
inv_yhat = scaler.inverse_transform(inv_yhat)
inv_yhat = inv_yhat[:, 0]
# invert scaling for actual
test_y = test_y.reshape((len(test_y), 1))
inv_y = concatenate((test_y, test_X[:, 1:]), axis=1)
inv_y = scaler.inverse_transform(inv_y)
inv_y = inv_y[:, 0]
# calculate RMSE
rmse = sqrt(mean_squared_error(inv_y, inv_yhat))
print('Test RMSE: %.3f' % rmse)
Все работает, кроме accuracy. Чего не доделал не пойму.
Epoch 1/5 - 3s - loss: 0.0407 - accuracy: 1.0000 - val_loss: 0.0163 - val_accuracy: 1.0000 Epoch 2/5 - 3s - loss: 0.0151 - accuracy: 1.0000 - val_loss: 0.0148 - val_accuracy: 1.0000 Epoch 3/5 - 3s - loss: 0.0145 - accuracy: 1.0000 - val_loss: 0.0146 - val_accuracy: 1.0000 Epoch 4/5 - 3s - loss: 0.0146 - accuracy: 1.0000 - val_loss: 0.0132 - val_accuracy: 1.0000 Epoch 5/5 - 3s - loss: 0.0144 - accuracy: 1.0000 - val_loss: 0.0132 - val_accuracy: 1.0000
результат работы

Офлайн

Board footer

Модераторировать

Powered by DjangoBB

Lo-Fi Version